展开全部

主编推荐语

本书系统介绍了数字图像融合领域的一些常见算法,便于你能够全面地了解和学习数字图像融合领域的一些基本概念和前沿知识,以适应现代信息技术的发展。

内容简介

书中系统地介绍了数字图像融合的基本概念,并针对不同传感器获得的数字图像进行了分类,而且还对不同类型的数字图像分别介绍了不同的图像融合算法。

本书共分为8章,主要内容包括图像融合简介、基于小波和轮廓波的多聚焦图像融合、基于剪切波和Smoothlet的多聚焦图像融合、红外与可见光数字图像融合、医学图像融合、基于仿生算法的医学图像融合、遥感图像融合和数字图像融合发展趋势。

目录

  • 版权信息
  • 前言
  • 第1章 图像融合简介
  • 1.1 研究背景及意义
  • 1.2 国内外研究现状
  • 1.3 图像融合基础知识
  • 1.3.1 图像融合层次
  • 1.3.2 传统图像融合算法
  • 1.3.3 图像融合存在的问题
  • 1.4 图像融合评价标准
  • 1.4.1 主观评价标准
  • 1.4.2 客观评价标准
  • 第2章 基于小波和轮廓波的多聚焦图像融合
  • 2.1 多聚焦图像特点
  • 2.2 基于小波的多聚焦图像融合算法
  • 2.2.1 小波变换
  • 2.2.2 小波域多聚焦图像融合算法
  • 2.2.3 基于小波的多聚焦图像融合实验结果分析
  • 2.3 基于轮廓波的多聚焦图像融合算法
  • 2.3.1 轮廓波变换
  • 2.3.2 复轮廓波变换
  • 2.3.3 向导滤波
  • 2.3.4 基于轮廓波变换图像融合算法
  • 2.3.5 实验结果分析
  • 2.4 结合轮廓波变换与核范数最小化理论的多聚焦图像融合算法
  • 2.4.1 核范数最小化理论
  • 2.4.2 图像融合算法
  • 2.4.3 实验结果与分析
  • 2.5 本章小结
  • 第3章 基于剪切波和Smoothlet的多聚焦图像融合
  • 3.1 剪切波变换基础知识
  • 3.1.1 剪切波变换
  • 3.1.2 离散剪切波变换
  • 3.1.3 非下采样剪切波变换
  • 3.2 基于剪切波的多聚焦图像融合算法
  • 3.2.1 基于剪切波变换的图像融合框架
  • 3.2.2 基于剪切波变换的图像融合规则
  • 3.2.3 实验结果对比与分析
  • 3.3 基于NSST-FRFT的多聚焦图像融合算法
  • 3.3.1 NSST-FRFT原理
  • 3.3.2 NSST-FRFT图像融合框架
  • 3.3.3 图像融合规则
  • 3.3.4 实验结果对比与分析
  • 3.4 基于NSST域的自适应区域与脉冲发放皮层模型的多聚焦图像融合算法
  • 3.4.1 共享相似性和自适应区域
  • 3.4.2 脉冲发放皮层模型
  • 3.4.3 基于自适应区域、EOE和SCM的图像融合
  • 3.4.4 实验结果分析
  • 3.5 基于Smoothlet的图像融合算法
  • 3.5.1 Smoothlet变换及依赖变换理论介绍
  • 3.5.2 基于NSCT和Smoothlet的图像融合
  • 3.5.3 仿真实验和结果分析
  • 3.6 基于灰度共生矩阵的多聚焦图像融合算法
  • 3.6.1 图像的灰度共生矩阵
  • 3.6.2 融合框架
  • 3.6.3 实验结果
  • 3.7 本章小结
  • 第4章 红外与可见光图像融合
  • 4.1 红外与可见光图像特点
  • 4.2 基于NSST域自适应PCNN的红外与可见光图像融合算法
  • 4.2.1 区域提取
  • 4.2.2 脉冲耦合神经网络(PCNN)
  • 4.2.3 图像融合框架
  • 4.2.4 图像融合规则
  • 4.2.5 实验结果对比与分析
  • 4.3 基于NSST域模糊逻辑的红外与可见光图像融合算法
  • 4.3.1 图像融合框架
  • 4.3.2 图像融合规则
  • 4.3.3 实验结果对比与分析
  • 4.4 基于SCM和CST的红外与可见光图像融合算法
  • 4.4.1 图像融合框架
  • 4.4.2 图像融合规则
  • 4.4.3 仿真验证
  • 4.5 基于复剪切波域结合向导滤波与模糊逻辑的红外与可见光图像融合算法
  • 4.5.1 融合规则
  • 4.5.2 仿真验证
  • 4.6 本章小结
  • 第5章 医学图像融合
  • 5.1 医学图像特点
  • 5.2 基于NSST和高斯混合模型的医学彩色图像融合算法
  • 5.2.1 HIS模型
  • 5.2.2 高斯混合模型
  • 5.2.3 图像融合框架
  • 5.2.4 图像融合规则
  • 5.2.5 实验结果对比与分析
  • 5.3 基于非下采样复小波变换的医学图像融合算法
  • 5.3.1 非下采样复小波变换的基本理论
  • 5.3.2 图像融合步骤
  • 5.3.3 实验结果与分析
  • 5.4 基于NSST变换和Smoothlet的医学图像融合算法
  • 5.4.1 图像融合框架
  • 5.4.2 融合规则
  • 5.4.3 仿真实验和结果分析
  • 5.5 Shearlet变换和稀疏表示相结合的甲状腺图像融合算法
  • 5.5.1 图像的稀疏表示
  • 5.5.2 图像融合算法
  • 5.5.3 实验结果与分析
  • 5.6 基于加权核范数最小化的医学图像融合算法
  • 5.6.1 加权核范数最小化理论
  • 5.6.2 图像自相似性
  • 5.6.3 融合框架
  • 5.6.4 实验结果分析
  • 5.7 基于改进拉普拉斯能量的医学图像融合算法
  • 5.7.1 改进的拉普拉斯能量和
  • 5.7.2 融合算法
  • 5.7.3 实验结果与分析
  • 5.8 基于改进PCNN的非下采样剪切波域医学图像融合算法
  • 5.8.1 稀疏编码与字典设计方法
  • 5.8.2 基于稀疏表示的低频图像融合
  • 5.8.3 滑动窗口尺寸对融合结果的影响
  • 5.8.4 滑动步长对融合结果的影响
  • 5.8.5 基于改进PCNN的高频医学图像融合
  • 5.8.6 不同的PCNN输入项对融合结果的影响
  • 5.8.7 不同的PCNN链接强度对融合结果的影响
  • 5.8.8 整体融合算法
  • 5.8.9 实验结果与分析
  • 5.9 本章小结
  • 第6章 基于仿生算法的医学图像融合
  • 6.1 仿生优化算法概述
  • 6.1.1 粒子群算法
  • 6.1.2 蚁群算法
  • 6.1.3 人工鱼群算法
  • 6.2 基于人工鱼群算法优化的小波域图像融合算法
  • 6.2.1 融合规则与具体算法步骤
  • 6.2.2 实验结果分析
  • 6.3 结合Shearlet变换和果蝇优化算法的甲状腺图像融合算法
  • 6.3.1 融合规则
  • 6.3.2 实验结果分析
  • 6.4 本章小结
  • 第7章 遥感图像融合
  • 7.1 传统的高分辨率遥感图像融合算法及比较
  • 7.1.1 4种传统融合算法的原理和分析
  • 7.1.2 算法应用和比较
  • 7.2 基于复剪切波域的遥感图像融合算法
  • 7.2.1 复剪切波
  • 7.2.2 融合规则
  • 7.2.3 实验结果与分析
  • 7.3 本章小结
  • 第8章 数字图像融合发展趋势
  • 8.1 数字图像融合发展及应用
  • 8.2 数字图像融合研究的展望
  • 参考文献
展开全部

评分及书评

评分不足
1个评分

出版方

机械工业出版社有限公司

机械工业出版社是全国优秀出版社,自1952年成立以来,坚持为科技、为教育服务,以向行业、向学校提供优质、权威的精神产品为宗旨,以“服务社会和人民群众需求,传播社会主义先进文化”为己任,产业结构不断完善,已由传统的图书出版向着图书、期刊、电子出版物、音像制品、电子商务一体化延伸,现已发展为多领域、多学科的大型综合性出版社,涉及机械、电工电子、汽车、计算机、经济管理、建筑、ELT、科普以及教材、教辅等领域。